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Abstract

Using the two additional Beam Position Monitors (BPM’s) found on either side of one of the
Interaction Points (the so-called Collision Point Monitors), one can determine, in principle, the
single-turn matrix for one BPM location or the other and, hence, the lattice functions at that
location. Once the amplitude function and its slope at one BPM is found, it is straight forward
to compute the amplitude function through the collision hall and the location of its minimum,
and the value of the function at the collision point (β∗).

The two Beam Position Monitors (BPM’s), or Collision Point Monitors, within an Interaction
Region are located about ±7.5 m from the Interaction Point (IP) with no intervening magnetic
elements (with the exception of the detector solenoid, the effects of which we will ignore for now).
Thus, the slope of the trajectory can be accurately determined from the two BPM readings. If
one could gather position data at the two BPM’s on a turn-by-turn basis, then the inferred slope,
coupled with the data at one BPM, can be used to reconstruct the phase space evolution of an
induced betatron oscillation over a number of turns, as was first performed in the Tevatron in
1985.[1] For more accurate results, one must appropriately take into account the decoherence of
the kicked beam. (See, for example, [2], [3].)

The resulting phase space ellipse can be fit for the local value of the amplitude function and its
slope. Once the amplitude function and its slope are determined at one of the BPM’s, then it is
straight forward to determine the amplitude function at the IP, or any point in between, since the
amplitude function is a parabola through this region. Since the BPM’s at these locations measure
both horizontal and vertical motion, the full 4× 4 matrix can in principle be measured and the full
effects of local coupling could be inferred. We will defer further discussion of coupled motion for
now.

Suppose a betatron oscillation is induced by a fast kicker in the Tevatron. Let x1 and x2

be the recorded positions of the oscillation as measured at the upstream and downstream BPM’s,
respectively, across an Interaction Region straight section, as indicated in Figure 1. The two BPM’s
are located ±L∗ away from the IP. Thus, the slope of the trajectory at the first BPM is given by

x′
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Figure 1: Schematic of BPM placement across straight section.

The phase space ellipse of the trajectory at the location of the first BPM is given by

1 + α2
1

β1
x2

1 + 2α1x1x
′
1 + β1x

′
1
2 = A2.

By inducing betatron oscillations with a kicker magnet and taking turn-by-turn BPM data, one
can fit the data for A, β1, and α1. While different kicker settings will yield different values of A,
the data sets should converge toward a consistent set of values for β1 and α1. The issue will be the
requirements on BPM accuracy versus kick amplitude to make more precise measurements of the
amplitude function.

Once the conditions at the upstream BPM are determined, the amplitude function across the
straight section will be given by

β(z) = β1 − 2α1(z + L∗) + γ1(z + L∗)2

where γ ≡ (1 + α2)/β and z is the distance from the IP (i.e., z = 0 at the center of the detector).

To illustrate the procedure, the pages attached below show the result of a Mathcad simulation
of how one would perform the measurement. In the calculation we generate simulated turn-by-turn
BPM data at the two detectors, with a random measurement error. In this example, the amplitude
measured at the downstream BPM is chosen to be 5% larger than the amplitude measured at
the upstream BPM (here, 2 mm) and a random error with rms 20 µm is assigned to each BPM
measurement. The slope on each turn between the two detectors is computed, and the data are fit
to minimize the function

M =
∑

i

{
(α1xi + β1x

′
i)

2 − a2
}

using the three parameters β1, α1, and a. The results of the fit are shown, and the resulting function
β(z) between the two BPM’s is plotted. Also shown are the values of β∗ (β at z = 0), βmin and
the location (in z) of βmin.
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Notes on further analysis

Further work needs to be done to understand the applicability of the technique:

• We are most interested in measuring β∗ at collision, where the amplitude of the kick should
necessarily be small. Thus, the interplay of kick amplitude and BPM resolution must be
addressed.

• Similarly, the inherent nonlinearities of the Tevatron will cause the initially coherent beta-
tron oscillation induced by a kicker magnet to decohere, and so the relevant time scales of
the decoherence and our ability to extract the true oscillation amplitude and phase space
development must be understood.

That is, we need to determine the required kick amplitude, BPM resolution, and decoherence
time necessary to arrive at, say, a 5% measurement of β and α at the BPM.

• It would also be good to look into the applicability of an ”AC dipole,” as has been used
at BNL, for generating sustained driven betatron oscillations for diagnostic purposes.[4],[5]
This may be very useful not only for use at the IR’s with regards to the above measurement,
but also for use with the new high-resolution Tevatron BPM system forthcoming for general
“non-destructive” lattice measurements.
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Turn-by-turn IP BPM data to determine Beta-star... MJS 2/5/04

Assume Nturn’s of BPM data at the two BPMs across a IP straight section:

Nturn 200:= i 0 1, Nturn..:= Typical Amplitude: a 2 mm⋅:=

Resolution (mm): res 0.020 mm⋅:=φ0 rnd 2 π⋅( ):=

Lstar 7.5 m⋅:= ν 0.582408625:=

x1i
a cos 2 π⋅ ν⋅ i⋅ φ0+( )⋅ res( ) rnorm Nturn 1+ 0, 1,( ) i⋅+:=

x2i
1.05 a⋅( ) cos 2 π⋅ ν⋅ i⋅ φ0 174.59882873 deg⋅+( )+ ⋅ res( ) rnorm Nturn 1+ 0, 1,( ) i⋅+:=
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∑:=

a0 10 mm⋅:=β0 200 m⋅:=α0 10:=initial guesses:Fit the data to an ellipse:

xp1

x2 x1−

2 Lstar⋅
:=Determine angles across the straight section:



100 m⋅
β1

a⋅ 1.642 mm=Typical oscillation amplitude in the arcs (β = 100 m):

β Lstar( )
β Lstar−( )

1.053=ratio of a2 to a1:Check:

α zmin( ) 0=β zmin( ) 38.381 cm=Beta minimum:

α 0 m⋅( ) 0.51−=β 0 m⋅( ) 48.353 cm=Beta at IP (z = 0 m):
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Amplitude Function across the IR:


